

# Searching for Dark Matter at the Deep Underground Laboratories

Kaixuan Ni University of California, San Diego <u>nikx@ucsd.edu</u>

REV20 Seminar

Oct.18, 2016

### First evidence of dark matter came from the Coma Cluster (Fritz Zwicky, 1933)



400 times invisible matter compared to the visible matter!



### Dark matter evidence from the Galactic rotational curves (Vera Rubin, 1976)



https://youtu.be/sl23cwbbNqs



"Bullet clusters" colliding with each other and separating the dark matter and normal matter parts.

normal matter

dark matter





#### The Milky Way Surrounded by a Dark Matter Halo



#### What we know about normal matter?







#### What is Dark Matter?

10  $3 \rightarrow 2$  SIMP 5 0 ADM neutrino v -5 WIMP  $\log_{10}(\sigma_{int} \ / \ pb)$ -10 neutralino  $\chi$ wimpzilla -15 -20 axion a axino ã -25 sterile neutrino N -30 gravitino  $g_{3/2}$ -35 M<sub>GUT</sub> μeV keV GęV -40-18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18 log10(mDM / GeV)

#### non-baryonic dark matter candidates

- Known through gravitational effect, but no EM interactions
- Any interaction with normal matter besides gravity?
- Baryonic dark matter (brown dwarfs, black holes etc.)
- Non-baryonic dark matter (BSM of particle physics)

H. Baer et al., Phys.Rept. 555 (2015) 1-60

Is dark matter the Weakly Interacting Massive Particle (WIMP) from the Beyond Standard Model physics, such as Supersymmetry?



#### Three ways to probe the nature of dark matter



Produce dark matter: using high energy colliders





Indirect detection: detect the annihilation/decay products





Direct detection: via collisions with standard model particles



#### **Detect Dark Matter in Our Galaxy**

Dark Matter Halo

Extent of Survey around the Sun





#### Detect DM via Scattering



#### Detect DM via Scattering



smaller cross-section, lower detectability



#### **Direct Detection of Dark Matter: Basic Facts**

- WIMP mass: GeV~100TeV
- local WIMP density: 0.3 GeV/cm<sup>3</sup>
- Isothermal Maxwellian velocity distribution with v<sub>0</sub>~220 km/s
- WIMP escape velocity ~544 km/s
- Local circular velocity ~230 km/s
- Standard assumption: elastic scattering with target nucleus, coupling to mass (SI) or spin (SD)



<1 detection/100-kg/year

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\left|\boldsymbol{q}\right|^{2}} = \frac{C}{\nu^{2}}G_{\mathrm{F}}^{2}F\left|\boldsymbol{q}\right|^{2}$$

$$C_{SI} = \frac{1}{\pi G_{F}^{2}}\left[Zf_{p} + (A-Z)f_{n}\right]^{2}$$

$$C_{SD} = \frac{8}{\pi}\left[a_{p}\left\langle S_{p}\right\rangle + a_{n}\left\langle S_{n}\right\rangle\right]^{2}\frac{J+1}{J}$$

#### **Expected Signatures in Detectors: Spin-Independent case**



#### Challenge#1: how to achieve ultra-low background



#### avoid cosmic rays



#### go deep underground



#### avoid natural radiation



use ultra-pure materials

### More than 20 experiments world-wide are searching for DM at underground labs.



SouthPole DM-ICE The muon induced background is greatly reduced by going to a deep underground laboratory.



#### Challenge#2: how to detect low energy nuclear recoils?



#### **Current Limits**



#### The most sensitive technology

Two-phase xenon for dark matter searches



#### Merits of Two-Phase Xenon for Dark Matter Searches

#### Scientifically Attractive

- Sensitive to both heavy and light dark matter
- Sensitive to both Spin-independent and Spin-dependent (Xe129, Xe131)
- Sensitive to both nuclear recoils and electron recoils

#### Technically Achievable

- Ultra-low background with self-shielding, 3D fiducialization, ER/NR discrimination
- Ultra-pure Xe target: sub-ppb (O<sub>2</sub> etc.) and sub-ppt (Kr) contamination
- Multi-ton target achievable: with reasonable cost (\$1~2M/ton) and relative simpler cryogenics (165K)

# Liquid xenon detectors pushing the sensitivity of dark matter direct detection.



Update from Physics of the Dark Universe 1, 94 (2012)



# LUX (2013-2015): 6.0x10<sup>-46</sup> cm<sup>2</sup> at 33 GeV with 118 kg x 85 days (arXiv:1512.03506, PRL)





#### LUX (2016): final limit 2.2x10<sup>-46</sup> cm<sup>2</sup> at 50 GeV with 100 kg x 332 live-days (arXiv:1608.07648)





#### PandaX-II in China - first dark matter search result (2016): no WIMPs in 367 kg x 99 live-days





- \*  $2.5 \times 10^{-46} \text{ cm}^2$  at  $40 \text{ GeV}/c^2$
- keep running now

The next biggest detector **XENON1T** is coming online at Gran Sasso Underground Laboratory, Italy





#### XENON1T: the largest running dark matter detector













#### XENON1T TPC: the largest two-phase xenon TPC ever built



- \* 2-ton active liquid xenon target
- \* 96 cm drift x 96 cm diameter TPC
- \* 248 low radioactivity, high QE (~35%) R11410-21 PMTs
- \* Detector fully filled and functional in May
- \* Signals keep improving with better liquid purity



Time (us)

### XENON1T: liquid xenon purity keeps improving



- Electron lifetime reaching a few hundred us
- TPC is now fully transparent to all events, a milestone towards science data taking

#### Recent status: reducing the background with water shielding



Background studies started towards the first dark matter data taking now!

# **XENON1T Background Studies**

Background Simulation and Expected Performance (JCAP 1604 (2016) no.04, 027)







Overall ER Background (1-12 keVee)



Optimal fiducial volumes will be chosen at different stages of the dark matter search

Less than 0.5 electronic recoil bkg event in 1800 kg x 20 live-days (with 99.75% ER rejection)

## XENON1T/nT: the bigger, the better



Continue to probe two orders of magnitude in the WIMP parameter space with the XENON1T/nT program in the next five years!

# Summary

- Liquid Xenon is now the most sensitive technology for direct
   Dark Matter detection
- Three orders of magnitude improvement in sensitivity in the last decade by XE100/ LUX/PandaX experiments
- XENON1T, the largest running dark matter detector, is starting to explore new territories of the Dark Matter parameter space now!



Roszkowski, Sessolo, Williams, arXiv:1405.4289